Background & Aims

Neuropathic pain is a clinically common disease that is difficult to treat. Because of severe pain and recurrent symptoms of neuropathic pain which can cause lead to depression in some patients. Although NP-depression comorbidity has attracted widespread attention, the neural mechanism of NP-depression comorbidity is still unclear. The excitability of lateral habenula (LHb) neurons is closely related to pain and negative emotions. T-type calcium channel, as a member of the calcium ion channel family, can participate in the regulation of neuronal excitability, abnormal expression and functional changes of T-type calcium channels will lead to pain and negative emotions. Whether T-type calcium channels in LHb involved in the regulation of NP-depression comorbidity?

Methods

C57BL/6J wild-type mice were selected to establish SNC and Sham model mice, and the mechanical pain threshold was tested before and after operation. Depression and exercise-related behaviors were measured after operation to clarify the occurrence time of NP-depression comorbidity in the SNC model. In vitro electrophysiological experiments were performed on the two groups of mice at 8 w postoperatively to observe the excitability of LHb neurons and the functional changes of T-type calcium channels. Mibefradil was used to observe the changes of LHb neurons excitability and the functional of T-type calcium channels in electrophysiological experiments. At the same time, the changes of pain, depression and motor behavior of mice in the two groups were observed after local administration of mibefradil to LHb neurons after intracranial cannulation.

Results

(1) The SNC model developed hyperalgesia on the third day and maintained it until 10 w postoperatively. Depressive-like behavior appeared at 8 w and it still existed after 10 w postoperatively. The SNC model did not affect its motor function.
(2) Compared with mice in Sham group, the excitability of neurons increased in the NP-depression comorbidity state in vitro electrophysiological experiments.
(3) The IT amplitude and current density of T-type calcium current in SNC mice were significantly increased in the NP-depression comorbidity compared with Sham group mice.
(4) Mibefradil can significantly reduce the excitability of LHb neurons and the amplitude and current density of IT.
(5) After local administration of Mibefradil, the mechanical hyperalgesia and depression-like behaviors of the mice in the SNC group could be significantly relieved and had no effect on the motor function of the mice in the two groups.

Conclusions

The SNC model can cause the occurrence of NP-depression comorbidity and the T-type calcium channel of LHb neurons is an ion channel which involved in the formation of NP-depression comorbidity and the regulation of pain and depression. T-type calcium channel is an important target for the treatment of NP-depression comorbidity.

References

[1] N. B. Finnerup, S. Haroutounian, P. Kamerman, et al. Neuropathic pain: an updated grading system for research and clinical practice[J]. Pain, 2016, 157(8): 1599-1606.
[2] N. B. Finnerup, N. Attal, S. Haroutounian, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis[J]. Lancet Neurol, 2015, 14(2): 162-73.
[3] R. D. Treede, T. S. Jensen, J. N. Campbell, et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes[J]. Neurology, 2008, 70(18): 1630-5.
[4] N. Torrance, B. H. Smith, M. I. Bennett, et al. The epidemiology of chronic pain of predominantly neuropathic origin. Results from a general population survey[J]. J Pain, 2006, 7(4): 281-9.
[5] D. Bouhassira, M. Lantéri-Minet, N. Attal, et al. Prevalence of chronic pain with neuropathic characteristics in the general population[J]. Pain, 2008, 136(3): 380-387.
[6] A. Berger, E. M. Dukes,G. Oster. Clinical characteristics and economic costs of patients with painful neuropathic disorders[J]. J Pain, 2004, 5(3): 143-9.
[7] R. H. Dworkin, A. B. O’Connor, M. Backonja, et al. Pharmacologic management of neuropathic pain: evidence-based recommendations[J]. Pain, 2007, 132(3): 237-251.
[8] J. Friedly, I. Nishio, M. J. Bishop, et al. The relationship between repeated epidural steroid injections and subsequent opioid use and lumbar surgery[J]. Arch Phys Med Rehabil, 2008, 89(6): 1011-5.
[9] G. Xu, X. Zhang, M. Zhu, et al. Clinical efficacy of transforaminal endoscopic discectomy in the treatment of recurrent lumbar disc herniation: a single-center retrospective analysis[J]. BMC Musculoskelet Disord, 2023, 24(1): 24.
[10] A. J. Ferrari, F. J. Charlson, R. E. Norman, et al. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010[J]. PLoS Med, 2013, 10(11): e1001547.
[11] P. E. Greenberg, A. A. Fournier, T. Sisitsky, et al. The economic burden of adults with major depressive disorder in the United States (2005 and 2010)[J]. J Clin Psychiatry, 2015, 76(2): 155-62.
[12] J. X. Li. Pain and depression comorbidity: a preclinical perspective[J]. Behav Brain Res, 2015, 276(92-8.
[13] M. Von Korff, S. F. Dworkin, L. Le Resche, et al. An epidemiologic comparison of pain complaints[J]. Pain, 1988, 32(2): 173-183.
[14] C. Berna, S. Leknes, E. A. Holmes, et al. Induction of depressed mood disrupts emotion regulation neurocircuitry and enhances pain unpleasantness[J]. Biol Psychiatry, 2010, 67(11): 1083-90.
[15] K. Wiech,I. Tracey. The influence of negative emotions on pain: behavioral effects and neural mechanisms[J]. Neuroimage, 2009, 47(3): 987-94.
[16] I. A. Strigo, A. N. Simmons, S. C. Matthews, et al. Association of major depressive disorder with altered functional brain response during anticipation and processing of heat pain[J]. Arch Gen Psychiatry, 2008, 65(11): 1275-84.
[17] G. Blackburn-Munro. Hypothalamo-pituitary-adrenal axis dysfunction as a contributory factor to chronic pain and depression[J]. Curr Pain Headache Rep, 2004, 8(2): 116-24.
[18] N. B. Finnerup, S. H. Sindrup,T. S. Jensen. The evidence for pharmacological treatment of neuropathic pain[J]. Pain, 2010, 150(3): 573-581.
[19] G. J. Norman, K. Karelina, N. Zhang, et al. Stress and IL-1beta contribute to the development of depressive-like behavior following peripheral nerve injury[J]. Mol Psychiatry, 2010, 15(4): 404-14.
[20] M. J. Bair, R. L. Robinson, W. Katon, et al. Depression and pain comorbidity: a literature review[J]. Arch Intern Med, 2003, 163(20): 2433-45.
[21] M. L. Concha, I. H. Bianco,S. W. Wilson. Encoding asymmetry within neural circuits[J]. Nat Rev Neurosci, 2012, 13(12): 832-43.
[22] H. Aizawa, M. Kobayashi, S. Tanaka, et al. Molecular characterization of the subnuclei in rat habenula[J]. J Comp Neurol, 2012, 520(18): 4051-66.
[23] Y. Yang, Y. Cui, K. Sang, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression[J]. Nature, 2018, 554(7692): 317-322.
[24] K. S. Wilcox, M. J. Gutnick,G. R. Christoph. Electrophysiological properties of neurons in the lateral habenula nucleus: an in vitro study[J]. J Neurophysiol, 1988, 59(1): 212-25.
[25] O. Hikosaka. The habenula: from stress evasion to value-based decision-making[J]. Nat Rev Neurosci, 2010, 11(7): 503-13.
[26] O. Hikosaka, S. R. Sesack, L. Lecourtier, et al. Habenula: crossroad between the basal ganglia and the limbic system[J]. J Neurosci, 2008, 28(46): 11825-9.
[27] T. Takeuchi, A. J. Duszkiewicz,R. G. Morris. The synaptic plasticity and memory hypothesis: encoding, storage and persistence[J]. Philos Trans R Soc Lond B Biol Sci, 2014, 369(1633): 20130288.
[28] B. Zhang, Y. Gao, Y. Li, et al. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula[J]. Behav Neurol, 2016, 2016(7919534.
[29] L. Shelton, L. Becerra,D. Borsook. Unmasking the mysteries of the habenula in pain and analgesia[J]. Prog Neurobiol, 2012, 96(2): 208-19.
[30] L. Gonçalves, C. Sego,M. Metzger. Differential projections from the lateral habenula to the rostromedial tegmental nucleus and ventral tegmental area in the rat[J]. J Comp Neurol, 2012, 520(6): 1278-300.
[31] L. Zhou, M. Z. Liu, Q. Li, et al. Organization of Functional Long-Range Circuits Controlling the Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus[J]. Cell Rep, 2017, 18(12): 3018-3032.
[32] W. W. Zhang, T. Chen, S. Y. Li, et al. Tachykinin receptor 3 in the lateral habenula alleviates pain and anxiety comorbidity in mice[J]. Front Immunol, 2023, 14(1049739.
[33] W. A. Catterall, J. Striessnig, T. P. Snutch, et al. International Union of Pharmacology. XL. Compendium of voltage-gated ion channels: calcium channels[J]. Pharmacol Rev, 2003, 55(4): 579-81.
[34] W. A. Catterall. Structure and regulation of voltage-gated Ca2+ channels[J]. Annu Rev Cell Dev Biol, 2000, 16(521-55.
[35] E. A. Ertel, K. P. Campbell, M. M. Harpold, et al. Nomenclature of voltage-gated calcium channels[J]. Neuron, 2000, 25(3): 533-5.
[36] F. Belardetti,G. W. Zamponi. Linking calcium-channel isoforms to potential therapies[J]. Curr Opin Investig Drugs, 2008, 9(7): 707-15.
[37] G. W. Zamponi, R. J. Lewis, S. M. Todorovic, et al. Role of voltage-gated calcium channels in ascending pain pathways[J]. Brain Res Rev, 2009, 60(1): 84-9.
[38] T. L. Yaksh. Calcium channels as therapeutic targets in neuropathic pain[J]. J Pain, 2006, 7(1 Suppl 1): S13-30.
[39] B. Robinson, Q. Gu,J. Kanungo. Antidepressant Actions of Ketamine: Potential Role of L-Type Calcium Channels[J]. Chemical research in toxicology, 2021, 34(5): 1198-1207.
[40] E. Carbone,H. D. Lux. A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones[J]. Nature, 1984, 310(5977): 501-2.
[41] M. C. Nowycky, A. P. Fox,R. W. Tsien. Three types of neuronal calcium channel with different calcium agonist sensitivity[J]. Nature, 1985, 316(6027): 440-3.
[42] D. A. McCormick,J. R. Huguenard. A model of the electrophysiological properties of thalamocortical relay neurons[J]. J Neurophysiol, 1992, 68(4): 1384-400.
[43] M. Chevalier, P. Lory, C. Mironneau, et al. T-type CaV3.3 calcium channels produce spontaneous low-threshold action potentials and intracellular calcium oscillations[J]. Eur J Neurosci, 2006, 23(9): 2321-9.
[44] F. M. Dreyfus, A. Tscherter, A. C. Errington, et al. Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of I(T)window[J]. J Neurosci, 2010, 30(1): 99-109.
[45] E. Perez-Reyes. Molecular physiology of low-voltage-activated t-type calcium channels[J]. Physiol Rev, 2003, 83(1): 117-61.
[46] E. M. Talley, L. L. Cribbs, J. H. Lee, et al. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels[J]. J Neurosci, 1999, 19(6): 1895-911.
[47] M. T. Nelson, S. M. Todorovic,E. Perez-Reyes. The role of T-type calcium channels in epilepsy and pain[J]. Curr Pharm Des, 2006, 12(18): 2189-97.
[48] N. Kerckhove, C. Mallet, A. François, et al. Ca(v)3.2 calcium channels: the key protagonist in the supraspinal effect of paracetamol[J]. Pain, 2014, 155(4): 764-772.
[49] P. E. Bermejo,B. Anciones. A review of the use of zonisamide in Parkinson’s disease[J]. Ther Adv Neurol Disord, 2009, 2(5): 313-7.
[50] M. Montera, A. Goins, L. Cmarko, et al. Trigeminal neuropathic pain is alleviated by inhibition of Ca3.3 T-type calcium channels in mice[J]. 2021, 15(1): 31-37.
[51] F. Shen, Z. Chen, W. Zhong, et al. Alleviation of neuropathic pain by regulating T-type calcium channels in rat anterior cingulate cortex[J]. 2015, 11(7.
[52] P. M. Casillas-Espinosa, S. R. Shultz, E. L. Braine, et al. Disease-modifying effects of a novel T-type calcium channel antagonist, Z944, in a model of temporal lobe epilepsy[J]. Prog Neurobiol, 2019, 182(101677.
[53] F. Wagner, T. Weiss,R. W. Veh. Electrophysiological properties of neurons and synapses in the lateral habenular complex (LHb)[J]. Pharmacol Biochem Behav, 2017, 162(38-45.
[54] S. Chaplan, F. Bach, J. Pogrel, et al. Quantitative assessment of tactile allodynia in the rat paw[J]. 1994, 53(1): 55-63.
[55] K. Naeem, L. Tariq Al Kury, F. Nasar, et al. Natural Dietary Supplement, Carvacrol, Alleviates LPS-Induced Oxidative Stress, Neurodegeneration, and Depressive-Like Behaviors via the Nrf2/HO-1 Pathway[J]. 2021, 14(1313-1329.
[56] X. Y. Yang, Z. L. Ma, D. R. Storm, et al. Selective ablation of type 3 adenylyl cyclase in somatostatin-positive interneurons produces anxiety- and depression-like behaviors in mice[J]. World J Psychiatry, 2021, 11(2): 35-49.
[57] T. Lei, D. Dong, M. Song, et al. Rislenemdaz treatment in the lateral habenula improves despair-like behavior in mice[J]. 2020, 45(10): 1717-1724.
[58] H. Hu, Y. Cui,Y. Yang. Circuits and functions of the lateral habenula in health and in disease[J]. Nat Rev Neurosci, 2020, 21(5): 277-295.
[59] L. Zhang, V. S. Hernández, J. D. Swinny, et al. A GABAergic cell type in the lateral habenula links hypothalamic homeostatic and midbrain motivation circuits with sex steroid signaling[J]. Transl Psychiatry, 2018, 8(1): 50.
[60] L. Zhang, V. S. Hernández, E. Vázquez-Juárez, et al. Thirst Is Associated with Suppression of Habenula Output and Active Stress Coping: Is there a Role for a Non-canonical Vasopressin-Glutamate Pathway?[J]. Front Neural Circuits, 2016, 10(13.
[61] W. Zhou, Y. Jin, Q. Meng, et al. A neural circuit for comorbid depressive symptoms in chronic pain[J]. Nat Neurosci, 2019, 22(10): 1649-1658.
[62] L. Gonçalves, R. Silva, F. Pinto-Ribeiro, et al. Neuropathic pain is associated with depressive behaviour and induces neuroplasticity in the amygdala of the rat[J]. Exp Neurol, 2008, 213(1): 48-56.
[63] D. S. Zahm,D. H. Root. Review of the cytology and connections of the lateral habenula, an avatar of adaptive behaving[J]. Pharmacol Biochem Behav, 2017, 162(3-21.
[64] P. M. Baker,S. J. Y. Mizumori. Control of behavioral flexibility by the lateral habenula[J]. Pharmacol Biochem Behav, 2017, 162(62-68.
[65] H. Aizawa, W. Cui, K. Tanaka, et al. Hyperactivation of the habenula as a link between depression and sleep disturbance[J]. Front Hum Neurosci, 2013, 7(826.
[66] C. D. Proulx, O. Hikosaka,R. Malinow. Reward processing by the lateral habenula in normal and depressive behaviors[J]. Nat Neurosci, 2014, 17(9): 1146-52.
[67] M. O. Jacus, V. N. Uebele, J. J. Renger, et al. Presynaptic Cav3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons[J]. J Neurosci, 2012, 32(27): 9374-82.
[68] S. G. Waxman,G. W. Zamponi. Regulating excitability of peripheral afferents: emerging ion channel targets[J]. Nat Neurosci, 2014, 17(2): 153-63.
[69] S. Choi, H. S. Na, J. Kim, et al. Attenuated pain responses in mice lacking Ca(V)3.2 T-type channels[J]. Genes Brain Behav, 2007, 6(5): 425-31.
[70] G. Gangarossa, S. Laffray, E. Bourinet, et al. T-type calcium channel Cav3.2 deficient mice show elevated anxiety, impaired memory and reduced sensitivity to psychostimulants[J]. Front Behav Neurosci, 2014, 8(92.
[71] D. Wirtshafter, K. E. Asin,M. R. Pitzer. Dopamine agonists and stress produce different patterns of Fos-like immunoreactivity in the lateral habenula[J]. Brain Res, 1994, 633(1-2): 21-6.
[72] S. Caldecott-Hazard, J. Mazziotta,M. Phelps. Cerebral correlates of depressed behavior in rats, visualized using 14C-2-deoxyglucose autoradiography[J]. J Neurosci, 1988, 8(6): 1951-61.
[73] J. Shumake, E. Edwards,F. Gonzalez-Lima. Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior[J]. Brain Res, 2003, 963(1-2): 274-81.
[74] J. Shumake,F. Gonzalez-Lima. Functional opposition between habenula metabolism and the brain reward system[J]. Front Hum Neurosci, 2013, 7(662.

Presenting Author

Gang Xu

Poster Authors

Gang Xu

Ph.D

The First Affiliated Hospital of Nanchang University

Lead Author

Daying Zhang

The First Affiliated Hospital of Nanchang University

Lead Author

Tao Liu PhD

The First Affiliated Hospital of Nanchang University

Lead Author

Mengye Zhu

The First Affiliated Hospital of Nanchang University

Lead Author

Topics

  • Mechanisms: Biological-Molecular and Cell Biology