Background & Aims
Arthritic pain is a global public health problem. This type of pain is related to conditions such as rheumatoid arthritis, osteoarthritis and gout. The first line of treatment for arthritic pain is the use of non-steroidal anti-inflammatory drugs (NSAIDs). As a second line of treatment, there are opioid-type drugs, whose excellent analgesic properties have been proven. However, the use of these drugs is limited by the adverse effects they produce. Often, a single pharmacological approach is not sufficient to counteract arthritic pain.
AIMS: To determine the antinociceptive effect of the individual and combined administration of celecoxib, and tramadol, on arthritic pain using the “Pain-Induced Functional Impairment in Rats (PIFIR)” experimental model. To identify possible synergistic interactions in the antinociceptive effects of the combination to establish the most optimal doses and to assess the development of pharmacological tolerance after a repeated administration regimen.
Methods
The antinociceptive effect was evaluated using the PIFIR model. Five groups were formed in this study: SHAM control, vehicule control, celecoxib at doses ranging from 1 to 56.2 mg/kg p.o. (CEL), tramadol at doses ranging from 3.2 to 31.6 mg/kg p.o. (TRA), and the combination of CEL (1-31.6 mg/kg, p.o.) + TRA (3.2-23.7 mg/kg, p.o.), resulting in a total of 20 combinations. Determination of the interaction types among these combinations was carried out by the “Synergistic Interaction Surface (SIS)” analysis. For the evaluation of pharmacological tolerance, a repeated administration scheme was applied, consisting of three daily administrations for four consecutive days.
Results
CEL and TRA individually exhibited a dose-dependent antinociceptive effect. When co-administered, interactions were mostly detected as supra-additive and additive. The combination that generated the highest level of efficacy was celecoxib at 17.8 mg/kg with tramadol at 23.7 mg/kg. The combination with the highest degree of potentiation was celecoxib at 3.2 mg/kg with tramadol at 10 mg/kg. Subsequently, the most effective doses of each individual drug, CEL at 56.2 mg/kg and TRA at 31.6 mg/kg, were evaluated, as well as the combination with the highest degree of efficacy; CEL at 17.8 mg/kg combined with TRA at 23.7 mg/kg, after a scheme of 12 repeated subcutaneous administrations. The dose of CEL at 56.2 mg/kg was found to reduce its effect by 52%, the dose of TRA at 31.6 mg/kg also reduced its effect by 99.27%, and the combination also reduced its effect by 85.29% after the repeated administration regimen.
Conclusions
CEL and TRA individually exhibit antinociceptive effects, and their co-administration generates mostly supra-additive and additive effects in different proportions under these experimental conditions. When a repeated administration regimen is employed, the antinociceptive effects of their most effective individual doses decrease as well as in the case of the combination.
References
??Barbour, K. E., Helmick, C. G., Boring, M., & Brady, T. J. (2017). Vital Signs: Prevalence of Doctor-Diagnosed Arthritis and Arthritis-Attributable Activity Limitation – United States, 2013-2015. MMWR. Morbidity and Mortality Weekly Report, 66(9), 246–253. https://doi.org/10.15585/MMWR.MM6609E1
?Bombardier, C., Laine, L., Reicin, A., Shapiro, D., Burgos-Vargas, R., Davis, B., Day, R., Ferraz, M. B., Hawkey, C. J., Hochberg, M. C., Kvien, T. K., & Schnitzer, T. J. (2000). Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. The New England Journal of Medicine, 343(21), 1520–1528. https://doi.org/10.1056/NEJM200011233432103
?Bournia, V. K., Kitas, G., Protogerou, A. D., & Sfikakis, P. P. (2017). Impact of non-steroidal anti-inflammatory drugs on cardiovascular risk: Is it the same in osteoarthritis and rheumatoid arthritis? Modern Rheumatology, 27(4), 559–569. https://doi.org/10.1080/14397595.2016.1232332
?Capone, M. L., Tacconelli, S., Di Francesco, L., Sacchetti, A., Sciulli, M. G., & Patrignani, P. (2007). Pharmacodynamic of cyclooxygenase inhibitors in humans. Prostaglandins & Other Lipid Mediators, 82(1–4), 85–94. https://doi.org/10.1016/J.PROSTAGLANDINS.2006.05.019
?Chou, T. C. (2006). Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies. Pharmacological Reviews, 58(3), 621–681. https://doi.org/10.1124/PR.58.3.10
?Clemett, D., & Goa, K. L. (2000). Celecoxib: a review of its use in osteoarthritis, rheumatoid arthritis and acute pain. Drugs, 59(4), 957–980. https://doi.org/10.2165/00003495-200059040-00017
?Corder, G., Castro, D. C., Bruchas, M. R., & Scherrer, G. (2018). Endogenous and Exogenous Opioids in Pain. Annual Review of Neuroscience, 41, 453–473. https://doi.org/10.1146/ANNUREV-NEURO-080317-061522
?Déciga-Campos, M., Guevara López, U., Díaz Reval, M. I., & López-Muñoz, F. J. (2003). Enhancement of antinociception by co-administration of an opioid drug (morphine) and a preferential cyclooxygenase-2 inhibitor (rofecoxib) in rats. European Journal of Pharmacology, 460(2–3), 99–107. https://doi.org/10.1016/S0014-2999(02)02920-5
?Dinakar, P., & Stillman, A. M. (2016). Pathogenesis of Pain. Seminars in Pediatric Neurology, 23(3), 201–208. https://doi.org/10.1016/J.SPEN.2016.10.003
?Dunham, N. W., & Miya, T. S. (1957). A note on a simple apparatus for detecting neurological deficit in rats and mice. Journal of the American Pharmaceutical Association. American Pharmaceutical Association, 46(3), 208–209. https://doi.org/10.1002/JPS.3030460322
?Frampton, J. E., & Keating, G. M. (2007). Celecoxib: a review of its use in the management of arthritis and acute pain. Drugs, 67(16), 2433–2472. https://doi.org/10.2165/00003495-200767160-00008
?García-Hernández, L., Déciga-Campos, M., Guevara-López, U., & López-Muñoz, F. J. (2007). Co-administration of rofecoxib and tramadol results in additive or sub-additive interaction during arthritic nociception in rat. Pharmacology Biochemistry and Behavior, 87(3), 331–340. https://doi.org/10.1016/J.PBB.2007.05.007
?González-Chica, D. A., Vanlint, S., Hoon, E., & Stocks, N. (2018). Epidemiology of arthritis, chronic back pain, gout, osteoporosis, spondyloarthropathies and rheumatoid arthritis among 1.5 million patients in Australian general practice: NPS MedicineWise MedicineInsight dataset. BMC Musculoskeletal Disorders, 19(1). https://doi.org/10.1186/S12891-018-1941-X
?Hamrick, K. L., Beyer, C. A., Lee, J. A., Cocanour, C. S., & Duby, J. J. (2019). Multimodal Analgesia and Opioid Use in Critically Ill Trauma Patients. Journal of the American College of Surgeons, 228(5), 769-775.e1. https://doi.org/10.1016/J.JAMCOLLSURG.2019.01.020
?Hudspith, M. J. (2016). Anatomy, physiology and pharmacology of pain. Anaesthesia & Intensive Care Medicine, 17(9), 425–430. https://doi.org/10.1016/J.MPAIC.2016.06.003
?Hudspith, M. J. (2019). Anatomy, physiology and pharmacology of pain. Anaesthesia & Intensive Care Medicine, 20(8), 419–425. https://doi.org/10.1016/J.MPAIC.2019.05.008
?Kalso, E., Edwards, J. E., Moore, R. A., & McQuay, H. J. (2004). Opioids in chronic non-cancer pain: systematic review of efficacy and safety. Pain, 112(3), 372–380. https://doi.org/10.1016/J.PAIN.2004.09.019
?Karamchandani, K., Klick, J. C., Linskey Dougherty, M., Bonavia, A., Allen, S. R., & Carr, Z. J. (2019). Pain management in trauma patients affected by the opioid epidemic: A narrative review. The Journal of Trauma and Acute Care Surgery, 87(2), 430–439. https://doi.org/10.1097/TA.0000000000002292
?Kidd, B. L., Langford, R. M., & Wodehouse, T. (2007). Current approaches in the treatment of arthritic pain. Arthritis Research and Therapy, 9(3), 1–7. https://doi.org/10.1186/AR2147/FIGURES/5
?Lanas, A., Benito, P., Alonso, J., Hernández-Cruz, B., Barón-Esquivias, G., Perez-Aísa, Á., Calvet, X., García-Llorente, J. F., Gobbo, M., & Gonzalez-Juanatey, J. R. (2014). Recomendaciones para una prescripción segura de antiinflamatorios no esteroideos: documento de consenso elaborado por expertos nominados por 3 sociedades científicas (SER-SEC-AEG). Reumatología Clínica, 10(2), 68–84. https://doi.org/10.1016/J.REUMA.2013.10.004
?Lanas, A., & Scheiman, J. (2007). Low-dose aspirin and upper gastrointestinal damage: epidemiology, prevention and treatment. Current Medical Research and Opinion, 23(1), 163–173. https://doi.org/10.1185/030079907X162656
?Lee, Y. H., Mollison, K., & Cheng, W. (1971). The effects of anti-ulcer agents on indomethacin-induced gastric ulceration in the rat. Archives Internationales de Pharmacodynamie et de Therapie.
?Leyva-López, N., Gutierrez-Grijalva, E. P., Ambriz-Perez, D. L., & Basilio Heredia, J. (2016). Flavonoids as Cytokine Modulators: A Possible Therapy for Inflammation-Related Diseases. International Journal of Molecular Sciences, 17(6). https://doi.org/10.3390/IJMS17060921
?López?Muñoz, F. J. (1994). Surface of synergistic interaction between dipyrone and morphine in the PIFIR model. Drug Development Research, 33(1), 26–32. https://doi.org/10.1002/DDR.430330105
?López?Muñoz, F. J., Salazar, L. A., Castañeda?Hernández, G., & Villarreal, J. E. (1993). A new model to assess analgesic activity: Pain-induced functional impairment in the rat (PIFIR). Drug Development Research, 28(2), 169–175. https://doi.org/10.1002/DDR.430280207
?McCormack, P. L., Lanas, A., McKenna, F., Patrignani, P., & Simon, L. S. (2011). Celecoxib: a review of its use for symptomatic relief in the treatment of osteoarthritis, rheumatoid arthritis and ankylosing spondylitis. Drugs, 71(18), 2457–2489. https://doi.org/10.2165/11208240-000000000-00000
?Merlos, M., Portillo-Salido, E., Brenchat, A., Aubel, B., Buxens, J., Fisas, A., Codony, X., Romero, L., Zamanillo, D., & Vela, J. M. (2018). Administration of a co-crystal of tramadol and celecoxib in a 1:1 molecular ratio produces synergistic antinociceptive effects in a postoperative pain model in rats. European Journal of Pharmacology, 833, 370–378. https://doi.org/10.1016/J.EJPHAR.2018.06.022
?Nafziger, A. N., & Barkin, R. L. (2018). Opioid Therapy in Acute and Chronic Pain. Journal of Clinical Pharmacology, 58(9), 1111–1122. https://doi.org/10.1002/JCPH.1276
?Nestler, E. J. (2004). Molecular mechanisms of drug addiction. Neuropharmacology, 47(SUPPL. 1), 24–32. https://doi.org/10.1016/j.neuropharm.2004.06.031
?O’Connor, A. B., & Dworkin, R. H. (2009). Treatment of neuropathic pain: an overview of recent guidelines. The American Journal of Medicine, 122(10 Suppl). https://doi.org/10.1016/J.AMJMED.2009.04.007
?Peláez-Ballestas, I., Sanin, L. H., Moreno-Montoya, J., Alvarez-Nemegyei, J., Burgos-Vargas, R., Garza-Elizondo, M., Rodríguez-Amado, J., Goycochea-Robles, M. V., Madariaga, M., Zamudio, J., Santana, N., & Cardiel, M. H. (2011). Epidemiology of the rheumatic diseases in Mexico. A study of 5 regions based on the COPCORD methodology. The Journal of Rheumatology. Supplement, 86(SUPPL. 86), 3–6. https://doi.org/10.3899/JRHEUM.100951
?Puebla Díaz, F. (2005). Tipos de dolor y escala terapéutica de la O.M.S.: Dolor iatrogénico. Oncología (Barcelona), 28(3), 33–37. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0378-48352005000300006&lng=es&nrm=iso&tlng=es
?Raja, S. N., Carr, D. B., Cohen, M., Finnerup, N. B., Flor, H., Gibson, S., Keefe, F. J., Mogil, J. S., Ringkamp, M., Sluka, K. A., Song, X. J., Stevens, B., Sullivan, M. D., Tutelman, P. R., Ushida, T., & Vader, K. (2020). The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain, 161(9), 1976–1982. https://doi.org/10.1097/J.PAIN.0000000000001939
?Ruiz Mejía, C., María, A., Pérez, P., Urrego Vásquez, A., Daniel, ;, & González, G. (2016). Adherencia al tratamiento en artritis reumatoide: condición indispensable para el control de la enfermedad Adherence to treatment in rheumatoid arthritis: an essential condition for disease control. Revista Cubana de Medicina General Integral, 32(3). https://scielo.sld.cuhttps://scielo.sld.cu
?Tacconelli, S., Capone, M. L., Sciulli, M. G., Ricciotti, E., & Patrignani, P. (2002). The Biochemical Selectivity of Novel COX-2 Inhibitors in Whole Blood Assays of COX-isozyme Activity. Current Medical Research and Opinion, 18(8), 503–511. https://doi.org/10.1185/030079902125001335
?Tallarida, R. J. (2011). Quantitative Methods for Assessing Drug Synergism. Genes and Cancer, 2(11), 1003–1008. https://doi.org/10.1177/1947601912440575/ASSET/IMAGES/LARGE/10.1177_1947601912440575-FIG4.JPEG
?Vazzana, M., Andreani, T., Fangueiro, J., Faggio, C., Silva, C., Santini, A., Garcia, M. L., Silva, A. M., & Souto, E. B. (2015). Tramadol hydrochloride: pharmacokinetics, pharmacodynamics, adverse side effects, co-administration of drugs and new drug delivery systems. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 70(C), 234–238. https://doi.org/10.1016/J.BIOPHA.2015.01.022
?Williams, B. S., & Buvanendran, A. (2011). Nonopioid analgesics: NSAIDs, COX-2 inhibitors, and acetaminophen. Essentials of Pain Medicine, 130–139. https://doi.org/10.1016/B978-1-4377-2242-0.00026-2
?Woolf, C. J. (2004). Pain: moving from symptom control toward mechanism-specific pharmacologic management. Annals of Internal Medicine, 140(6), 441–451. https://doi.org/10.7326/0003-4819-140-8-200404200-00010
?Woolf, C. J. (2010). What is this thing called pain? Journal of Clinical Investigation, 120(11), 3742–3744. https://doi.org/10.1172/JCI45178
?Woolf, C. J., & Salter, M. W. (2000). Neuronal plasticity: increasing the gain in pain. Science (New York, N.Y.), 288(5472), 1765–1768. https://doi.org/10.1126/SCIENCE.288.5472.1765
Presenting Author
Valeria Aranda-Bahena
Poster Authors
Valeria Aranda Bahena
Master's student
Center for Research and Advanced Studies of the National Polytechnic Institute
Lead Author
Topics
- Models: Chronic Pain - Inflammatory