Background & Aims
Individuals who fall in love often exhibit lower pain perception when exposed to their romantic partners. However, it remains unanswered whether pain perception differs between fall-in-love and single individuals, as well as whether single individuals could also benefit from pain relief by viewing others’ romantic love. To address these gaps, two event-related potential (ERP) studies were conducted.
Methods
Study 1 compared the pain perceptions between fall-in-love and single groups and found that compared with the single group. Study 2 focused on single participants and examined their pain perceptions while viewing romantic love, positive, and neutral pictures.
Results
Study 1 found that fall-in-love group exhibited longer reaction times and smaller P2 amplitudes to pain stimuli, especially to high-pain stimuli. Study 2 found that compared with positive and neutral pictures, single participants displayed longer reaction times and smaller P2 amplitudes to pain stimuli while viewing romantic love pictures.
Conclusions
These findings suggest that either falling in love or viewing others’ romantic love can decrease individuals’ pain perception.
References
Acevedo, B. P., Aron, A., Fisher, H. E., & Brown, L. L. (2012). Neural correlates of long-term intense romantic love. Social Cognitive and Affective Neuroscience, 7(2), 145–159. https://doi.org/10.1093/scan/nsq092
Albornoz-Cabello, M., Sanchez-Santos, J. A., Melero-Suarez, R., Heredia-Rizo, A. M., & Espejo-Antunez, L. (2019). Effects of adding interferential therapy electro-massage to usual care after surgery in subacromial pain syndrome: A randomized clinical trial. Journal of Clinical Medicine, 8(2), 175. https://doi.org/10.3390/jcm8020175
Amoah, D. K. (2022). Advances in the understanding and enhancement of the human cognitive functions of learning and memory. Brain Science Advances, 8(4), 276–297. https://doi.org/10.26599/BSA.2022.9050023
Aron, A., Fisher, H., Mashek, D. J., Strong, G., Li, H., & Brown, L. L. (2005). Reward, motivation, and emotion systems associated with early-stage intense romantic love. Journal of Neurophysiology, 94(1), 327–337. https://doi.org/10.1152/jn.00838.2004
Attridge, N., Noonan, D., Eccleston, C., & Keogh, E. (2015). The disruptive effects of pain on n-back task performance in a large general population sample. Pain, 156(10), 1885–1891. https://doi.org/10.1097/j.pain.0000000000000245
Bartels, A., & Zeki, S. (2000). The neural basis of romantic love. Neuroreport, 11(17), 3829–3834. https://doi.org/10.1097/00001756-200011270-00046
Bartels, A., & Zeki, S. (2004). The neural correlates of maternal and romantic love. NeuroImage, 21(3), 1155–1166. https://doi.org/10.1016/j.neuroimage.2003.11.003
Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49–59. https://doi.org/10.1016/0005-7916(94)90063-9
Cannas Aghedu, F., Sarlo, M., Zappasodi, F., Acevedo, B. P., & Bisiacchi, P. S. (2021). Romantic love affects emotional processing of love-unrelated stimuli: An EEG/ERP study using a love induction task. Brain and Cognition, 151, 105733. https://doi.org/10.1016/j.bandc.2021.105733
Daoust, R., Paquet, J., Cournoyer, A., Piette, É., Morris, J., Lessard, J., Castonguay, V., Williamson, D., & Chauny, J.-M. (2020). Side effects from opioids used for acute pain after emergency department discharge. The American Journal of Emergency Medicine, 38(4), 695–701. https://doi.org/10.1016/j.ajem.2019.06.001
de Wied, M., & Verbaten, M. N. (2001). Affective pictures processing, attention, and pain tolerance. Pain, 90(1), 163–172. https://doi.org/10.1016/S0304-3959(00)00400-0
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
Dragan, S., ?erban, M.-C., Damian, G., Buleu, F., Valcovici, M., & Christodorescu, R. (2020). Dietary patterns and interventions to alleviate chronic pain. Nutrients, 12(9), 2510. https://doi.org/10.3390/nu12092510
Duschek, S., Nassauer, L., Montoro, C. I., Bair, A., & Montoya, P. (2019). Dispositional empathy is associated with experimental pain reduction during provision of social support by romantic partners. Scandinavian Journal of Pain, 20(1), 205–209. https://doi.org/10.1515/sjpain-2019-0025
Franklin, K. B. (1989). Analgesia and the neural substrate of reward. Neuroscience and Biobehavioral Reviews, 13(2–3), 149–154. https://doi.org/10.1016/s0149-7634(89)80024-7
García, C. Y. (1998). Temporal course of the basic components of love throughout relationships. Psychology in Spain, 2(1), 90–103.
Goldstein, P., Shamay-Tsoory, S. G., Yellinek, S., & Weissman-Fogel, I. (2016). Empathy predicts an experimental pain reduction during touch. The Journal of Pain, 17(10), 1049–1057. https://doi.org/10.1016/j.jpain.2016.06.007
Goldstein, P., Weissman-Fogel, I., Dumas, G., & Shamay-Tsoory, S. G. (2018). Brain-to-brain coupling during handholding is associated with pain reduction. Proceedings of the National Academy of Sciences, 115(11), E2528–E2537. https://doi.org/10.1073/pnas.1703643115
Hatfield, E., & Rapson, R. L. (1987). Passionate love/sexual desire: Can the same paradigm explain both? Archives of Sexual Behavior, 16(3), 259–278. https://doi.org/10.1007/BF01541613
Hoeppli, M. E., Nahman-Averbuch, H., Hinkle, W. A., Leon, E., Peugh, J., Lopez-Sola, M., King, C. D., Goldschneider, K. R., & Coghill, R. C. (2022). Dissociation between individual differences in self-reported pain intensity and underlying fMRI brain activation. Nature Communications, 13(1), Article 1. https://doi.org/10.1038/s41467-022-31039-3
Hu, L., & Iannetti, G. D. (2019). Neural indicators of perceptual variability of pain across species. Proceedings of the National Academy of Sciences of the United States of America, 116(5), 1782–1791. https://doi.org/10.1073/pnas.1812499116
Hu, L., Valentini, E., Zhang, Z. G., Liang, M., & Iannetti, G. D. (2014). The primary somatosensory cortex contributes to the latest part of the cortical response elicited by nociceptive somatosensory stimuli in humans. NeuroImage, 84, 383–393. https://doi.org/10.1016/j.neuroimage.2013.08.057
Hwang, S. W. (2013). Advances in research on pharmacological targets for pain relief. Current Neuropharmacology, 11(6), 559. https://doi.org/10.2174/1570159X11311060001
Jia, T., Wang, Y., Chen, J., Zhang, X., Cao, J., Xiao, C., & Zhou, C. (2022). A nigro–subthalamo–parabrachial pathway modulates pain-like behaviors. Nature Communications, 13(1), Article 1. https://doi.org/10.1038/s41467-022-35474-0
Jones, L., Fabrizi, L., Laudiano-Dray, M., Whitehead, K., Meek, J., Verriotis, M., & Fitzgerald, M. (2017). Nociceptive Cortical Activity Is Dissociated from Nociceptive Behavior in Newborn Human Infants under Stress. Current Biology, 27(24), 3846-3851.e3. https://doi.org/10.1016/j.cub.2017.10.063
Jung, T.-P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., & Sejnowski, T. (2001). Analysis and visualization of single?trial event?related potentials. Human Brain Mapping, 14, 166–185. https://doi.org/10.1002/hbm.1050
Lang, P. J., & Bradley, M. M. (2010). Emotion and the motivational brain. Biological Psychology, 84(3), 437–450. https://doi.org/10.1016/j.biopsycho.2009.10.007
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1997). International affective picture system (IAPS): Technical manual and affective ratings. NIMH Center for the Study of Emotion and Attention, 1(39–58), 3.
Li, J., Yang, H., Xiao, Y., Liu, X., Ma, B., Ma, K., Hu, L., & Lu, X. (2023). The analgesic effects and neural oscillatory mechanisms of virtual reality scenes based on distraction and mindfulness strategies in human volunteers. British Journal of Anaesthesia, S0007091223004932. https://doi.org/10.1016/j.bja.2023.09.001
Li, W., Liu, P., Hu, Y., & Meng, J. (2020). Pain Modulates Responses to Emotional Stimuli. Frontiers in Psychology, 11. https://www.frontiersin.org/articles/10.3389/fpsyg.2020.595987
Lin, C., Zhuo, S., & Peng, W. (2022). Ongoing pain facilitates emotional decision-making behaviors. Brain Science Advances, 8(1), 38–49. https://doi.org/10.26599/BSA.2022.9050005
Mancini, F., Zhang, S., & Seymour, B. (2022). Computational and neural mechanisms of statistical pain learning. Nature Communications, 13(1), Article 1. https://doi.org/10.1038/s41467-022-34283-9
Master, S. L., Eisenberger, N. I., Taylor, S. E., Naliboff, B. D., Shirinyan, D., & Lieberman, M. D. (2009). A picture’s worth: Partner photographs reduce experimentally induced pain. Psychological Science, 20(11), 1316–1318. https://doi.org/10.1111/j.1467-9280.2009.02444.x
Meagher, M. W., Arnau, R. C., & Rhudy, J. L. (2001). Pain and Emotion: Effects of Affective Picture Modulation. Psychosomatic Medicine, 63(1), 79.
Meng, J., Jackson, T., Chen, H., Hu, L., Yang, Z., Su, Y., & Huang, X. (2013). Pain perception in the self and observation of others: An ERP investigation. NeuroImage, 72, 164–173. https://doi.org/10.1016/j.neuroimage.2013.01.024
Meng, J., Li, X., Peng, W., Li, Z., & Shen, L. (2020). The interaction between pain and attractiveness perception in others. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-62478-x
Mouraux, A., & Iannetti, G. D. (2009). Nociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity. Journal of Neurophysiology, 101(6), 3258–3269. https://doi.org/10.1152/jn.91181.2008
Nilakantan, A., Younger, J., Aron, A., & Mackey, S. (2014). Preoccupation in an early-romantic relationship predicts experimental pain relief. Pain Medicine, 15(6), 947–953. https://doi.org/10.1111/pme.12422
Nummenmaa, L., Tuominen, L., Dunbar, R., Hirvonen, J., Manninen, S., Arponen, E., Machin, A., Hari, R., Jääskeläinen, I. P., & Sams, M. (2016). Social touch modulates endogenous ?-opioid system activity in humans. NeuroImage, 138, 242–247. https://doi.org/10.1016/j.neuroimage.2016.05.063
Peng, W., Lou, W., Huang, X., Ye, Q., Tong, R. K.-Y., & Cui, F. (2021). Suffer together, bond together: Brain-to-brain synchronization and mutual affective empathy when sharing painful experiences. NeuroImage, 238, 118249. https://doi.org/10.1016/j.neuroimage.2021.118249
Price, C. N., & Bidelman, G. M. (2021). Attention reinforces human corticofugal system to aid speech perception in noise. NeuroImage, 235, 118014. https://doi.org/10.1016/j.neuroimage.2021.118014
Raja, S. N., Carr, D. B., Cohen, M., Finnerup, N. B., Flor, H., Gibson, S., Keefe, F. J., Mogil, J. S., Ringkamp, M., Sluka, K. A., Song, X.-J., Stevens, B., Sullivan, M. D., Tutelman, P. R., Ushida, T., & Vader, K. (2020). The revised international association for the study of pain definition of pain: Concepts, challenges, and compromises. Pain, 161(9), 1976–1982. https://doi.org/10.1097/j.pain.0000000000001939
Ring, C., Kavussanu, M., & Willoughby, A. (2016). Pain thresholds, pain-induced frontal alpha activity and pain-related evoked potentials are associated with antisocial behavior and aggressiveness in athletes. Psychology of Sport and Exercise, 22, 303–311. https://doi.org/10.1016/j.psychsport.2015.09.003
Ringqvist, Å., Dragioti, E., Björk, M., Larsson, B., & Gerdle, B. (2019). Moderate and stable pain reductions as a result of interdisciplinary pain rehabilitation-a cohort study from the swedish quality registry for pain rehabilitation (SQRP). Journal of Clinical Medicine, 8(6), 905. https://doi.org/10.3390/jcm8060905
Roa Romero, Y., Straube, T., Nitsch, A., Miltner, W. H. R., & Weiss, T. (2013). Interaction between stimulus intensity and perceptual load in the attentional control of pain. Pain, 154(1), 135–140. https://doi.org/10.1016/j.pain.2012.10.003
Sampasa-Kanyinga, H., Lien, A., Hamilton, H. A., & Chaput, J.-P. (2022). Canadian 24-h movement guidelines, life stress, and self-esteem among adolescents. Frontiers in Public Health, 10, 702162. https://doi.org/10.3389/fpubh.2022.702162
Shao, M., Li, L., Li, X., Wei, Z., Wang, J., Hong, M., Liu, X., & Meng, J. (in press). The Effect of Top-down Attention on Empathy Fatigue. Cerebral Cortex. https://doi.org/10.1093/cercor/bhad441
Stein, C. (2020). Opioid analgesia: Recent developments. Current Opinion in Supportive and Palliative Care, 14(2), 112–117. https://doi.org/10.1097/SPC.0000000000000495
Storm, H., Günther, A., Sackey, P. V., Bernhardsson, J., & Bjärtå, A. (2019). Measuring pain-Physiological and self-rated measurements in relation to pain stimulation and anxiety. Acta Anaesthesiologica Scandinavica, 63(5), 668–675. https://doi.org/10.1111/aas.13323
Tiemann, L., Hohn, V. D., Ta Dinh, S., May, E. S., Nickel, M. M., Gross, J., & Ploner, M. (2018). Distinct patterns of brain activity mediate perceptual and motor and autonomic responses to noxious stimuli. Nature Communications, 9(1), Article 1. https://doi.org/10.1038/s41467-018-06875-x
Tu, Y., Zhang, B., Cao, J., Wilson, G., Zhang, Z., & Kong, J. (2019). Identifying inter-individual differences in pain threshold using brain connectome: A test-retest reproducible study. NeuroImage, 202, 116049. https://doi.org/10.1016/j.neuroimage.2019.116049
Valentini, E., Hu, L., Chakrabarti, B., Hu, Y., Aglioti, S. M., & Iannetti, G. D. (2012). The primary somatosensory cortex largely contributes to the early part of the cortical response elicited by nociceptive stimuli. NeuroImage, 59(2), 1571–1581. https://doi.org/10.1016/j.neuroimage.2011.08.069
Vickers, A. J., Vertosick, E. A., Lewith, G., MacPherson, H., Foster, N. E., Sherman, K. J., Irnich, D., Witt, C. M., Linde, K., & Acupuncture Trialists’ Collaboration. (2018). Acupuncture for chronic pain: Update of an individual patient data meta-analysis. The Journal of Pain, 19(5), 455–474. https://doi.org/10.1016/j.jpain.2017.11.005
Wang, H., Guo, Y., Tu, Y., Peng, W., Lu, X., Bi, Y., Iannetti, G. D., & Hu, L. (2023). Neural processes responsible for the translation of sustained nociceptive inputs into subjective pain experience. Cerebral Cortex, 33(3), 634–650. https://doi.org/10.1093/cercor/bhac090
Wang, Y. M., Chen, J., & Han, B. Y. (2017). The effects of cognitive reappraisal and expressive suppression on memory of emotional pictures. Frontiers in Psychology, 8, 1921. https://doi.org/10.3389/fpsyg.2017.01921
Wei, Z., Huang, Y., Li, X., Shao, M., Qian, H., He, B., & Meng, J. (2023). The influence of aggressive exercise on responses to self-perceived and others’ pain. Cerebral Cortex, 33(21), 10802–10812. https://doi.org/10.1093/cercor/bhad324
Wiech, K., Eippert, F., Vandekerckhove, J., Zaman, J., Placek, K., Tuerlinckx, F., Vlaeyen, J. W. S., & Tracey, I. (2022). Cortico-brainstem mechanisms of biased perceptual decision-making in the context of pain. The Journal of Pain, 23(4), 680–692. https://doi.org/10.1016/j.jpain.2021.11.006
Wilson, N., Kariisa, M., Seth, P., Smith, H., & Davis, N. L. (2020). Drug and opioid-involved overdose deaths—United states, 2017-2018. MMWR. Morbidity and Mortality Weekly Report, 69(11), 290–297. https://doi.org/10.15585/mmwr.mm6911a4
Xu, X., Aron, A., Brown, L., Cao, G., Feng, T., & Weng, X. (2011). Reward and motivation systems: A brain mapping study of early-stage intense romantic love in Chinese participants. Human Brain Mapping, 32(2), 249–257. https://doi.org/10.1002/hbm.21017
Younger, J., Aron, A., Parke, S., Chatterjee, N., & Mackey, S. (2010). Viewing pictures of a romantic partner reduces experimental pain: Involvement of neural reward systems. PloS One, 5(10), e13309. https://doi.org/10.1371/journal.pone.0013309
Zhang, L., Lu, X., Huang, G., Zhang, H., Tu, Y., Kong, Y., & Hu, L. (2022). Selective and replicable neuroimaging-based indicators of pain discriminability. Cell Reports Medicine, 3(12), 100846. https://doi.org/10.1016/j.xcrm.2022.100846
Zhang, M., Yang, Z., Zhong, J., Zhang, Y., Lin, X., Wang, J., Cai, H., & Kong, Y. (2022). The analgesic effect of nostalgia elicited by idiographic and nomothetic approaches on thermal stimulus. Annals of the New York Academy of Sciences, 1517(1), 167–175. https://doi.org/10.1111/nyas.14903
Zhang, M., Zhang, Y., & Kong, Y. (2019). Interaction between social pain and physical pain. Brain Science Advances, 5(4), 265–273. https://doi.org/10.26599/BSA.2019.9050023
Zhang, S., & Chen, X. (2022). Effect of background luminance of visual stimulus on elicited steady-state visual evoked potentials. Brain Science Advances, 8(1), 50–56. https://doi.org/10.26599/BSA.2022.9050006
Zhang, Y., Ye, Q., He, H., Jin, R., & Peng, W. (2023). Neurocognitive Mechanisms Underlying Attention Bias Towards Pain: Evidence From a Drift-Diffusion Model and Event-Related Potentials. The Journal of Pain, 24(7), 1307–1320. https://doi.org/10.1016/j.jpain.2023.03.003
Zhang, Z. G., Hu, L., Hung, Y. S., Mouraux, A., & Iannetti, G. D. (2012). Gamma-band oscillations in the primary somatosensory cortex—A direct and obligatory correlate of subjective pain intensity. The Journal of Neuroscience: The Official Journal of the Society for