Background & Aims

Previous tetracycline (TC) studies hinted at its analgesic potential. Since a possible limitation of the prolonged use of TCs is a negative effect on the microflora or the development of antibiotic-resistant microorganisms due to their antibacterial activity, chemically modified TCs devoid of such activity have been developed, although their role in treatment is not clear. In the present study, we were interested in testing whether analgesic properties could be found in newly synthesized TCs lacking antibiotic activity. To reach this goal, we tested the effects of DDMC (5, 10, 20mg.kg-1) and DDOX (10, 20, 40mg.kg-1) two compounds, which are non-antibiotic derivatives of demeclocycline and doxycycline, respectively in the formalin-induced nociceptive pain model. We used Morphine as reference analgesic in all paradigms.

Methods

DDMC and DDOX were produced through in-house synthesis using demeclocycline and doxycycline as starting material. DDMC was produced by simultaneously reducing the dimethylamino group at position 4 and the hydroxy group at position 12a of DMC HCl, using zinc dust in an acetic acid/water blend. Similarly, DDOX was acquired by applying a comparable protocol that necessitated a reduction step starting from DOX. Using the formalin-induced nociceptive pain model in adult male C57?BL6 mice, we tested the effects of DDMC (5, 10, 20 mg.kg-1) and DDOX (10, 20, 40 mg.kg-1), non-antibiotic derivatives of demeclocycline and doxycycline, respectively in a acute and chronic administration. The impact of a single injection of DDMC (10 mg.kg-1) and DDOX (40mg.kg-1) on hyperalgesia expression in female mice was also investigated. Finally, the impact of a single injection of DDMC (10 mg.kg-1) and DDOX (40mg.kg-1) on spinal cord c-Fos, microglia and astrocyte expression was analysed.

Results

A sub-chronic treatment with 5 mg.kg-1 of DDMC remarkably reduced nociceptive pain in both phases of the test, comparable to morphine (10 mg.kg-1). DDOX was also effective but intrinsically less potent than DDMC as exerting analgesic effects between 20 and 40 mg.kg-1. Intriguingly, a single injection of DDMC (10 mg.kg-1) produced robust antinociceptive effects similar to morphine. A single injection of DDOX (40 mg.kg-1) also exerted anti-nociceptive effects in both phases. Male mice exhibited a better analgesic response to DDMC compared to females. Most interestingly, DDMC (10 mg.kg-1) and morphine treatments, but not DDOX, powerfully inhibited formalin-induced spinal cord c-Fos expression. Furthermore, both TC derivatives restrained the activation profile of Iba-1-immunoreactive cells, indicating a potential indirect effect on inflamed microglial cells.

Conclusions

Altogether, the present data demonstrate that the modified tetracycline DDMC and DDOX are effective as analgesic agents against formalin-induced pain stimulation operating independently of antimicrobiotic action. Specifically, DDMC is more effective than DDOX and there is a sex-dependent analgesic effect of DDMC. Present data also provide the evident potential of DDMC in reducing neuronal activation and the ability of both DDMC and DDOX to decrease microglial activation in the spinal cord. Overall, the present results indicate that chemically modified tetracycline might represent an alternative analgesic treatment.

References

Abbadie, C., Honoré, P., & Besson, J. M. (1994). Intense cold noxious stimulation of the rat hindpaw induces c-fos expression in lumbar spinal cord neurons. Neuroscience, 59(2), 457–468. https://doi.org/10.1016/0306-4522(94)90609-2
Ahmed, M. S., Wang, P., Nguyen, N. U. N., Nakada, Y., Menendez-Montes, I., Ismail, M., Bachoo, R., Henkemeyer, M., Sadek, H. A., & Kandil, E. S. (2021). Identification of tetracycline combinations as EphB1 tyrosine kinase inhibitors for treatment of neuropathic pain. Proceedings of the National Academy of Sciences of the United States of America, 118(10), e2016265118. https://doi.org/10.1073/pnas.2016265118
Albrecht, D. S., Forsberg, A., Sandström, A., Bergan, C., Kadetoff, D., Protsenko, E., Lampa, J., Lee, Y. C., Höglund, C. O., Catana, C., Cervenka, S., Akeju, O., Lekander, M., Cohen, G., Halldin, C., Taylor, N., Kim, M., Hooker, J. M., Edwards, R. R., Napadow, V., … Loggia, M. L. (2019). Brain glial activation in fibromyalgia – A multi-site positron emission tomography investigation. Brain, behavior, and immunity, 75, 72–83. https://doi.org/10.1016/j.bbi.2018.09.018
Allahyari, R. V., Heinsinger, N. M., Hwang, D., Jaffe, D. A., Rasouli, J., Shiers, S., Thomas, S. J., Price, T. J., Rostami, A., & Lepore, A. C. (2022). Response of Astrocyte Subpopulations Following Spinal Cord Injury. Cells, 11(4), 721. https://doi.org/10.3390/cells11040721
Amaechi, O., Huffman, M. M., & Featherstone, K. (2021). Pharmacologic Therapy for Acute Pain. American family physician, 104(1), 63–72.
Anthony, W. E., Wang, B., Sukhum, K. V., D’Souza, A. W., Hink, T., Cass, C., Seiler, S., Reske, K. A., Coon, C., Dubberke, E. R., Burnham, C. D., Dantas, G., & Kwon, J. H. (2022). Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults. Cell reports, 39(2), 110649. https://doi.org/10.1016/j.celrep.2022.110649
Asano, S., Hayashi, Y., Iwata, K., Okada-Ogawa, A., Hitomi, S., Shibuta, I., Imamura, Y., & Shinoda, M. (2020). Microglia-Astrocyte Communication via C1q Contributes to Orofacial Neuropathic Pain Associated with Infraorbital Nerve Injury. International journal of molecular sciences, 21(18), 6834. https://doi.org/10.3390/ijms21186834
Bastos, L. F., de Oliveira, A. C., Watkins, L. R., Moraes, M. F., & Coelho, M. M. (2012). Tetracyclines and pain. Naunyn-Schmiedeberg’s archives of pharmacology, 385(3), 225–241. https://doi.org/10.1007/s00210-012-0727-1
Bastos, L. F., Merlo, L. A., Rocha, L. T., & Coelho, M. M. (2007). Characterization of the antinociceptive and anti-inflammatory activities of doxycycline and minocycline in different experimental models. European journal of pharmacology, 576(1-3), 171–179. https://doi.org/10.1016/j.ejphar.2007.07.049
Bastos, L. F., Prazeres, J. D., Godin, A. M., Menezes, R. R., Soares, D. G., Ferreira, W. C., Dutra, M. M., Machado, R. R., & Coelho, M. M. (2013). Sex-independent suppression of experimental inflammatory pain by minocycline in two mouse strains. Neuroscience letters, 553, 110–114. https://doi.org/10.1016/j.neulet.2013.08.026
Bortolanza, M., Cavalcanti-Kiwiatkoski, R., Padovan-Neto, F. E., da-Silva, C. A., Mitkovski, M., Raisman-Vozari, R., & Del-Bel, E. (2015). Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson’s disease. Neurobiology of disease, 73, 377–387. https://doi.org/10.1016/j.nbd.2014.10.017
Bortolanza, M., Padovan-Neto, F. E., Cavalcanti-Kiwiatkoski, R., Dos Santos-Pereira, M., Mitkovski, M., Raisman-Vozari, R., & Del-Bel, E. (2015). Are cyclooxygenase-2 and nitric oxide involved in the dyskinesia of Parkinson’s disease induced by L-DOPA?. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 370(1672), 20140190. https://doi.org/10.1098/rstb.2014.0190
Cho, I. H., Chung, Y. M., Park, C. K., Park, S. H., Lee, H., Kim, D., Piao, Z. G., Choi, S. Y., Lee, S. J., Park, K., Kim, J. S., Jung, S. J., & Oh, S. B. (2006). Systemic administration of minocycline inhibits formalin-induced inflammatory pain in rat. Brain research, 1072(1), 208–214. https://doi.org/10.1016/j.brainres.2005.12.039
Coderre, T. J., & Melzack, R. (1992). The role of NMDA receptor-operated calcium channels in persistent nociception after formalin-induced tissue injury. The Journal of neuroscience : the official journal of the Society for Neuroscience, 12(9), 3671–3675. https://doi.org/10.1523/JNEUROSCI.12-09-03671.1992
Dai, Y., Kondo, E., Fukuoka, T., Tokunaga, A., Miki, K., & Noguchi, K. (2001). The effect of electroacupuncture on pain behaviors and noxious stimulus-evoked Fos expression in a rat model of neuropathic pain. The journal of pain, 2(3), 151–159. https://doi.org/10.1054/jpai.2001.19964
Dubuisson, D., & Dennis, S. G. (1977). The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain, 4(2), 161–174. https://doi.org/10.1016/0304-3959(77)90130-0
Erami, E., Azhdari-Zarmehri, H., Imoto, K., & Furue, H. (2017). Characterization of Nociceptive Behaviors Induced by Formalin in the Glabrous and Hairy Skin of Rats. Basic and clinical neuroscience, 8(1), 37–42. https://doi.org/10.15412/J.BCN.03080105
Fu, K. Y., Tan, Y. H., Sung, B., & Mao, J. (2009). Peripheral formalin injection induces unique spinal cord microglial phenotypic changes. Neuroscience letters, 449(3), 234–239. https://doi.org/10.1016/j.neulet.2008.11.009
Harriott, A. M., Waruinge, A., Appiah-Danquah, V., Berhanu, L., Morais, A., & Ayata, C. (2023). The effect of sex and estrus cycle stage on optogenetic spreading depression induced migraine-like pain phenotypes. The journal of headache and pain, 24(1), 85. https://doi.org/10.1186/s10194-023-01621-1
Hernandes, P. M., Batistela, M. F., Nascimento-Silva, J. M., Frias, A. T., Matthiesen, M., Campos, A. C., Lovick, T. A., & Zangrossi, H., Jr (2023). Sex and estrous cycle-linked differences in the effect of cannabidiol on panic-like responding in rats and mice. Behavioural brain research, 455, 114663. https://doi.org/10.1016/j.bbr.2023.114663
Hoffmann, T., Klemm, F., I Kichko, T., Sauer, S. K., Kistner, K., Riedl, B., Raboisson, P., Luo, L., Babes, A., Kocher, L., Carli, G., Fischer, M. J. M., & Reeh, P. W. (2022). The formalin test does not probe inflammatory pain but excitotoxicity in rodent skin. Physiological reports, 10(6), e15194. https://doi.org/10.14814/phy2.15194
Hua, X. Y., Svensson, C. I., Matsui, T., Fitzsimmons, B., Yaksh, T. L., & Webb, M. (2005). Intrathecal minocycline attenuates peripheral inflammation-induced hyperalgesia by inhibiting p38 MAPK in spinal microglia. The European journal of neuroscience, 22(10), 2431–2440. https://doi.org/10.1111/j.1460-9568.2005.04451.x
Hunt, S. P., Pini, A., & Evan, G. (1987). Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature, 328(6131), 632–634. https://doi.org/10.1038/328632a0
Ibironke, G. F., & Aji, K. E. (2011). Pain threshold variations in female rats as a function of the estrus cycle. Nigerian journal of physiological sciences : official publication of the Physiological Society of Nigeria, 26(1), 67–70.
Kawanabe, R., Yoshihara, K., Hatada, I., & Tsuda, M. (2021). Activation of spinal dorsal horn astrocytes by noxious stimuli involves descending noradrenergic signaling. Molecular brain, 14(1), 79. https://doi.org/10.1186/s13041-021-00788-5
Li, C., Sekiyama, H., Hayashida, M., Takeda, K., Sumida, T., Sawamura, S., Yamada, Y., Arita, H., & Hanaoka, K. (2007). Effects of topical application of clonidine cream on pain behaviors and spinal Fos protein expression in rat models of neuropathic pain, postoperative pain, and inflammatory pain. Anesthesiology, 107(3), 486–494. https://doi.org/10.1097/01.anes.0000278874.78715.1d
Liu, C. R., Duan, Q. Z., Wang, W., Wei, Y. Y., Zhang, H., Li, Y. Q., Wu, S. X., & Xu, L. X. (2011). Effects of intrathecal isoflurane administration on nociception and Fos expression in the rat spinal cord. European journal of anaesthesiology, 28(2), 112–119. https://doi.org/10.1097/EJA.0b013e328340514a
Loyd, D. R., Wang, X., & Murphy, A. Z. (2008). Sex differences in micro-opioid receptor expression in the rat midbrain periaqueductal gray are essential for eliciting sex differences in morphine analgesia. The Journal of neuroscience : the official journal of the Society for Neuroscience, 28(52), 14007–14017. https://doi.org/10.1523/JNEUROSCI.4123-08.2008
Marchand, F., Tsantoulas, C., Singh, D., Grist, J., Clark, A. K., Bradbury, E. J., & McMahon, S. B. (2009). Effects of Etanercept and Minocycline in a rat model of spinal cord injury. European journal of pain (London, England), 13(7), 673–681. https://doi.org/10.1016/j.ejpain.2008.08.001
Martín Arias, L. H., Martín González, A., Sanz Fadrique, R., & Vazquez, E. S. (2019). Cardiovascular Risk of Nonsteroidal Anti-inflammatory Drugs and Classical and Selective Cyclooxygenase-2 Inhibitors: A Meta-analysis of Observational Studies. Journal of clinical pharmacology, 59(1), 55–73. https://doi.org/10.1002/jcph.1302
Mei, X. P., Chen, L., Wang, W., Wu, D., Wang, L. Y., Zhang, T., Zhang, H., Xu, L. X., & Li, Y. Q. (2013). Combination of tramadol with minocycline exerted synergistic effects on a rat model of nerve injury-induced neuropathic pain. Neuro-Signals, 21(3-4), 184–196. https://doi.org/10.1159/000338049
Mogil J. S. (2020). Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nature reviews. Neuroscience, 21(7), 353–365. https://doi.org/10.1038/s41583-020-0310-6
Nasu, T., Kainuma, R., Ota, H., Mizumura, K., & Taguchi, T. (2024). Increased nociceptive behaviors and spinal c-Fos expression in the formalin test in a rat repeated cold stress model. Neuroscience research, 198, 30–38. https://doi.org/10.1016/j.neures.2023.06.010
Osborne, N. R., & Davis, K. D. (2022). Sex and gender differences in pain. International review of neurobiology, 164, 277–307. https://doi.org/10.1016/bs.irn.2022.06.013
Peng, J., Gu, N., Zhou, L., B Eyo, U., Murugan, M., Gan, W. B., & Wu, L. J. (2016). Microglia and monocytes synergistically promote the transition from acute to chronic pain after nerve injury. Nature communications, 7, 12029. https://doi.org/10.1038/ncomms12029
Posillico, C. K., Terasaki, L. S., Bilbo, S. D., & Schwarz, J. M. (2015). Examination of sex and minocycline treatment on acute morphine-induced analgesia and inflammatory gene expression along the pain pathway in Sprague-Dawley rats. Biology of sex differences, 6, 33. https://doi.org/10.1186/s13293-015-0049-3
Presley, R. W., Menétrey, D., Levine, J. D., & Basbaum, A. I. (1990). Systemic morphine suppresses noxious stimulus-evoked Fos protein-like immunoreactivity in the rat spinal cord. The Journal of neuroscience : the official journal of the Society for Neuroscience, 10(1), 323–335. https://doi.org/10.1523/JNEUROSCI.10-01-00323.1990
Raffaeli, W., & Arnaudo, E. (2017). Pain as a disease: an overview. Journal of pain research, 10, 2003–2008. https://doi.org/10.2147/JPR.S138864
Sadee, W., Oberdick, J., & Wang, Z. (2020). Biased Opioid Antagonists as Modulators of Opioid Dependence: Opportunities to Improve Pain Therapy and Opioid Use Management. Molecules (Basel, Switzerland), 25(18), 4163. https://doi.org/10.3390/molecules25184163
Saito, O., Svensson, C. I., Buczynski, M. W., Wegner, K., Hua, X. Y., Codeluppi, S., Schaloske, R. H., Deems, R. A., Dennis, E. A., & Yaksh, T. L. (2010). Spinal glial TLR4-mediated nociception and production of prostaglandin E(2) and TNF. British journal of pharmacology, 160(7), 1754–1764. https://doi.org/10.1111/j.1476-5381.2010.00811.x
Sapadin, A. N., & Fleischmajer, R. (2006). Tetracyclines: nonantibiotic properties and their clinical implications. Journal of the American Academy of Dermatology, 54(2), 258–265. https://doi.org/10.1016/j.jaad.2005.10.004
Svensson, C. I., Marsala, M., Westerlund, A., Calcutt, N. A., Campana, W. M., Freshwater, J. D., Catalano, R., Feng, Y., Protter, A. A., Scott, B., & Yaksh, T. L. (2003). Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. Journal of neurochemistry, 86(6), 1534–1544. https://doi.org/10.1046/j.1471-4159.2003.01969.x
Takahashi, Y., & Nakajima, Y. (1996). Dermatomes in the rat limbs as determined by antidromic stimulation of sensory C-fibers in spinal nerves. Pain, 67(1), 197–202. https://doi.org/10.1016/0304-3959(96)03116-8
Tourville, A., Viguier, S., González-Lizárraga, F., Tomas-Grau, R. H., Ramirez, P., Brunel, J. M., Dos Santos Pereira, M., Del-Bel, E., Chehin, R., Ferrié, L., Raisman-Vozari, R., Figadère, B., & Michel, P. P. (2023). Rescue of Dopamine Neurons from Iron-Dependent Ferroptosis by Doxycycline and Demeclocycline and Their Non-Antibiotic Derivatives. Antioxidants (Basel, Switzerland), 12(3), 575. https://doi.org/10.3390/antiox12030575
Tsuda M. (2016). Microglia in the spinal cord and neuropathic pain. Journal of diabetes investigation, 7(1), 17–26. https://doi.org/10.1111/jdi.12379
Vivanco-Estela, A. N., Dos-Santos-Pereira, M., Guimaraes, F. S., Del-Bel, E., & Nascimento, G. C. D. (2021). Cannabidiol has therapeutic potential for myofascial pain in female and male parkinsonian rats. Neuropharmacology, 196, 108700. https://doi.org/10.1016/j.neuropharm.2021.108700
Wang, X., Traub, R. J., & Murphy, A. Z. (2006). Persistent pain model reveals sex difference in morphine potency. American journal of physiology. Regulatory, integrative and comparative physiology, 291(2), R300–R306. https://doi.org/10.1152/ajpregu.00022.2006
Watkins, L. R., Milligan, E. D., & Maier, S. F. (2001). Glial activation: a driving force for pathological pain. Trends in neurosciences, 24(8), 450–455. https://doi.org/10.1016/s0166-2236(00)01854-3
Young, K., & Morrison, H. (2018). Quantifying Microglia Morphology from Photomicrographs of Immunohistochemistry Prepared Tissue Using ImageJ. Journal of visualized experiments : JoVE, (136), 57648. https://doi.org/10.3791/57648

Presenting Author

Glauce Crivelaro Nascimento

Poster Authors

Glauce Nascimento

OTHR

Faculdade de Odontologia de Ribeirão Preto da Universidade de São Paulo

Lead Author

Airam Vivanco-Estela

Lead Author

Patrick PhD. Michel

Lead Author

Bruno Figadere

Lead Author

Rita Raisman-Vozari

Lead Author

Elaine Del Bel

Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo

Lead Author

Topics

  • Treatment/Management: Pharmacology: Novel Targets