Background & Aims

The LFP is known to demonstrate the activity of neurons around the recording electrode in a localized area (Zhang et al., 2018), and can be subdivided into five frequency bands of delta (0.1 – 3 Hz), theta (3 – 7 Hz), alpha (7 – 12 Hz), beta (12 – 30 Hz), and gamma (30 – 100 Hz) (Marzbani et al., 2016). Furthermore, formalin injections through the paw in rats has been widely utilized in pain models to assess pain and analgesia (Dubuisson & Dennis, 1977). For many decades, ECT has been used as a treatment in individuals with mood and psychotic disorders who have shown a resistance to previous treatments (Espinoza & Kellner, 2022). The purpose of this proposed study is to determine the effect of ECT on LFP activities from various brain regions responding to nociceptive stimuli in anesthetized animals as well as freely-moving behavioral animals. The hypothesis is that ECT will suppress pain, as indicated by reduced LFP power, by activation of the descending inhibitory system.

Methods

Continuous LFP was recorded in the male adult Sprague-Dawley rat brain from intracranially implanted electrodes in the ACC, bilateral amygdala, and VTA. Under isoflurane anesthesia, the LFP was recorded in 3 separate formalin-induced nociceptive conditions: formalin-only (control condition, 3% 50 µl), ECT post-formalin, and ECT pre-formalin. The multi-ECT shock remained consistent in both ECT experimental conditions with 3 separate parameters of 50pulse/s, 0.7ms, 2s at 5mA, 20mA, and 50mA delivered 3 times, 10-15s apart. In addition, formalin behavioral testing was conducted in freely-moving rats. In one condition, under brief 2% isoflurane, 3% 50 µl formalin was injected into the left hind paw and then immediately given 3 ECT stimulations at 50 pulses/s, 0.7ms, 50mA for 2-seconds, each stimulation given 10-15s apart. In the second condition, the parameters remained the same, although, the set of 3 ECT stimulations was administered first, immediately followed by formalin injection.

Results

After using power spectrum analysis, a mixed effect was revealed: (1) ECT-induced inhibition, excitation, or no change. The change of LFP power also varies among these four locations, even within the same rat. Furthermore, the ECT-induced increase or decrease of power has a short duration of a few seconds to a few minutes. The sensitivity to isoflurane that determines the depth of anesthesia may play a role in causing this variability. (2) Results from the behavioral testing reveal a significant decrease in pain-score when ECT is administered, specifically between the 30 to 55 min post-formalin, without a difference in the sequencing of formalin-ECT or ECT-formalin. This data reveals that ECT significantly suppresses formalin response.

Conclusions

The LFP and behavioral results demonstrate that ECT evokes an anti-nociceptive effect.

References

References cited in Background and Aims:

Dubuisson, D., & Dennis, S. G. (1977). THE FORMALIN TEST: A QUANTITATIVE STUDY OF THE ANALGESIC EFFECTS OF MORPHINE, MEPERIDINE, AND BRAIN STEM STIMULATION IN RATS AND CATS. In Pain (Vol. 4). ElsevirrlNorth-Holland Biomedical Press.

Espinoza, R. T., & Kellner, C. H. (2022). Electroconvulsive Therapy. New England Journal of Medicine, 386(7), 667–672. doi: 10.1056/NEJMra2034954

Marzbani, H., Marateb, H. R., & Mansourian, M. (2016). Methodological Note: Neurofeedback: A Comprehen-sive Review on System Design, Methodology and Clini-cal Applications. 7(2). doi: 10.15412/J.BCN.03070208

Zhang, Q., Xiao, Z., Huang, C., Hu, S., Kulkarni, P., Martinez, E., Tong, A. P., Garg, A., Zhou, H., Chen, Z., & Wang, J. (2018). Local field potential decoding of the onset and intensity of acute pain in rats OPEN. doi: 10.1038/s41598-018-26527-w

Other references used in the study:

Abdi, S., Haruo, A., & Bloomstone, J. (2004). Electroconvulsive Therapy for Neuropathic Pain Electroconvulsive Therapy for Neuropathic Pain: A Case Report and Literature Review. Pain Physician, 7(2), 261–263.

Allen, H. N., Bobnar, H. J., & Kolber, B. J. (2021). Left and right hemispheric lateralization of the amygdala in pain. Progress in Neurobiology, 196, 101891. doi: 10.1016/J.PNEUROBIO.2020.101891

Antal, A., Brepohl, N., Poreisz, C., Boros, K., Csifcsak, G., & Paulus, W. (2008). Transcranial direct current stimulation over somatosensory cortex decreases experimentally Induced acute pain perception. Clinical Journal of Pain, 24(1), 56–63. doi: 10.1097/AJP.0b013e318157233b

Antal, A., Kincses, T. Z., Nitsche, M. A., Bartfai, O., & Paulus, W. (2004). Excitability Changes Induced in the Human Primary Visual Cortex by Transcranial Direct Current Stimulation: Direct Electrophysiological Evidence. Investigative Ophthalmology and Visual Science, 45(2), 702–707. doi: 10.1167/iovs.03-0688

Auvichayapat, P., Keeratitanont, K., Janyachareon, T., & Auvichayapat, N. (2018). The effects of transcranial direct current stimulation on metabolite changes at the anterior cingulate cortex in neuropathic pain: a pilot study. Journal of Pain Research, 11–2301. doi: 10.2147/JPR.S172920

Badran, B. W., Caulfield, K. A., Stomberg-Firestein, S., Summers, P. M., Dowdle, L. T., Savoca, M., Li, X., Austelle, C. W., Short, E. B., Borckardt, J. J., Spivak, N., Bystritsky, A., & George, M. S. (2020). Sonication of the anterior thalamus with MRI-Guided transcranial focused ultrasound (tFUS) alters pain thresholds in healthy adults: A double-blind, sham-controlled study. Brain Stimulation, 13(6), 1805–1812. doi: 10.1016/j.brs.2020.10.007

Berger, N. A., Besson, V. C., Boulares, A. H., Bürkle, A., Chiarugi, A., Clark, R. S., Curtin, N. J., Cuzzocrea, S., Dawson, T. M., Dawson, V. L., Haskó, G., Liaudet, L., Moroni, F., Pacher, P., Radermacher, P., Salzman, A. L., Snyder, S. H., Soriano, F. G., Strosznajder, R. P., … Szabo, C. (2018). Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. In British Journal of Pharmacology (Vol. 175, Issue 2, pp. 192–222). John Wiley and Sons Inc. doi: 10.1111/bph.13748

Bland, N. S., & Sale, M. v. (2019). Current challenges: the ups and downs of tACS. In Experimental Brain Research (Vol. 237, Issue 12, pp. 3071–3088). Springer. doi: 10.1007/s00221-019-05666-0

Bonica, J. J. (1979). Editorial The need of a taxonomy. PAIN, 6(3), 247–252. doi: 10.1016/0304-3959(79)90046-0

Busnello, J. V., Oses, J. P., da Silva, R. S., Feier, G., Barichello, T., Quevedo, J., Böhmer, A. E., Kapczinski, F., Souza, D. O., Sarkis, J. J. F., & Portela, L. V. (2008). Peripheral nucleotide hydrolysis in rats submitted to a model of electroconvulsive therapy. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32(8), 1829–1833. doi: 10.1016/j.pnpbp.2008.08.007

Carr, D. B., & Sesack, S. R. (2000). Projections from the Rat Prefrontal Cortex to the Ventral Tegmental Area: Target Specificity in the Synaptic Associations with Mesoaccumbens and Mesocortical Neurons.

Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B., & Uchida, N. (2012). Neuron-type-specific signals for reward and punishment in the ventral tegmental area. doi: 10.1038/nature10754

Esmaeilpour, Z., Marangolo, P., Hampstead, B. M., Bestmann, S., Galletta, E., Knotkova, H., & Bikson, M. (2018). Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimulation, 11(2), 310–321. doi: 10.1016/j.brs.2017.12.002

Fuchs, P. N., Balinsky, M., & Melzack, R. (1996). Electrical stimulation of the cingulum bundle and surrounding cortical tissue reduces formalin-test pain in the rat. In Brain Research (Vol. 743).

Fuchs, P. N., Peng, Y. B., Boyette-Davis, J. A., & Uhelski, M. L. (2014). The anterior cingulate cortex and pain processing. In Frontiers in Integrative Neuroscience (Vol. 8, Issue MAY). Frontiers Research Foundation. doi: 10.3389/fnint.2014.00035

Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology, 117(4), 845–850. doi: 10.1016/J.CLINPH.2005.12.003

Goddard, G. v. (1964). FUNCTIONS OF THE AMYGDALA*. In Psychological Bulletin (Vol. 62, Issue 2).

Halassa, M. M., Destexhe, A., Sohal, V. S., & Herreras, O. (2016). Local Field Potentials: Myths and Misunderstandings. Frontiers in Neural Circuits | Www.Frontiersin.Org, 10, 101. doi: 10.3389/fncir.2016.00101

Harris-Bozer, A. L., & Peng, Y. B. (2016). Inflammatory pain by carrageenan recruits low-frequency local field potential changes in the anterior cingulate cortex. Neuroscience Letters, 632, 8–14. doi: 10.1016/j.neulet.2016.08.016

Huang, Y. Z., Lu, M. K., Antal, A., Classen, J., Nitsche, M., Ziemann, U., Ridding, M., Hamada, M., Ugawa, Y., Jaberzadeh, S., Suppa, A., Paulus, W., & Rothwell, J. (2017). Plasticity induced by non-invasive transcranial brain stimulation: A position paper. In Clinical Neurophysiology (Vol. 128, Issue 11, pp. 2318–2329). Elsevier Ireland Ltd. doi: 10.1016/j.clinph.2017.09.007

Jansson, L., Wennström, M., Johanson, A., & Tingström, A. (2009). Glial cell activation in response to electroconvulsive seizures. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33(7), 1119–1128. doi: 10.1016/j.pnpbp.2009.06.007

Jansson, L., Wennström, M., Tingström, A., Kyeremanteng, C., James, J., Merali, Z., Alttoa, A., Hinsley, T. A., Kõiv, K., Brass, A., & Harro, J. (2008). Effect of stimulus parameters in a rat model of electroconvulsive seizures. https://ijnp.oxfordjournals.org/

Johansen, J. P., Fields, H. L., Manning, B. H., & Kennedy, D. (2001). The affective component of pain in rodents: Direct evidence for a contribution of the anterior cingulate cortex. https://www.pnas.org

Klein, M. M., Treister, R., Raij, T., Pascual-Leone, A., Park, L., Nurmikko, T., Lenz, F., Lefaucheur, J.-P., Lang, M., Hallett, M., Fox, M., Cudkowicz, M., Costello, A., Carr, D. B., Ayache, S. S., & Oaklander, A. L. (2015). Transcranial magnetic stimulation of the brain: guidelines for pain treatment research. doi: 10.1097/j.pain.0000000000000210

LaGraize, S. C., & Fuchs, P. N. (2007). GABAA but not GABAB receptors in the rostral anterior cingulate cortex selectively modulate pain-induced escape/avoidance behavior. Experimental Neurology, 204(1), 182–doi: 10.1016/j.expneurol.2006.10.007

Li, A. L., Sibi, J. E., Yang, X., Chiao, J. C., & Peng, Y. B. (2016). Stimulation of the ventral tegmental area increased nociceptive thresholds and decreased spinal dorsal horn neuronal activity in rat. Experimental Brain Research, 234(6), 1505–1514. doi: 10.1007/s00221-016-4558-z

Loeser, J. D., & Melzack, R. (1999). Pain: an overview.

Lozano, A. M., Lipsman, N., Bergman, H., Brown, P., Chabardes, S., Chang, J. W., Matthews, K., McIntyre, C. C., Schlaepfer, T. E., Schulder, M., Temel, Y., Volkmann, J., & Krauss, J. K. (2019). Deep brain stimulation: current challenges and future directions. In Nature Reviews Neurology (Vol. 15, Issue 3, pp. 148–160). Nature Publishing Group. doi: 10.1038/s41582-018-0128-2

Moret, B., Donato, R., Nucci, M., Cona, G., & Gianluca Campana, &. (2019). transcranial random noise stimulation (tRnS): a wide range of frequencies is needed for increasing cortical excitability. doi: 10.1038/s41598-019-51553-7

Neugebauer, V., Li, W., Bird, G. C., & Han, J. S. (2004). The amygdala and persistent pain. In Neuroscientist (Vol. 10, Issue 3, pp. 221–234). doi: 10.1177/1073858403261077

Paulus, W. (2011). Transcranial electrical stimulation (tES – tDCS; tRNS, tACS) methods. Neuropsychological Rehabilitation, 21(5), 602–617. doi: 10.1080/09602011.2011.557292

Paxinos, G., & Watson, C. (1997). The rat brain, in stereotaxic coordinates. Academic Press.

Perrey, S., Teo, W.-P., Castelli, L., Brighina, F., Curatolo, M., Cosentino, G., de Tommaso, M., Battaglia, G., Sarzi-Puttini, P. C., Guggino, G., & Fierro, B. (2019). Brain Modulation by Electric Currents in Fibromyalgia: A Structured Review on Non-invasive Approach With Transcranial Electrical Stimulation. doi: 10.3389/fnhum.2019.00040

Peterchev, A. v, Rosa, M. A., Deng, Z.-D., Prudic, J., & Lisanby, S. H. (2011). ECT Stimulus Parameters: Rethinking Dosage. doi: 10.1097/YCT.0b013e3181e48165

Riedel, W., Neeck, G., & Kerckhoff, S. W. G. (2001). Nociception, pain, and antinociception: current concepts MAIN TOPIC. In Z Rheumatol (Vol. 60).

Saiote, C., Turi, Z., Paulus, W., Antal, A., Miniussi, C., Herrmann, C. S., Baudewig, J., & Berlin, F. U. (2013). Combining functional magnetic resonance imaging with transcranial electrical stimulation. doi: 10.3389/fnhum.2013.00435

Salik, I., Raman, ;, & Affiliations, M. (2022). Electroconvulsive Therapy Continuing Education Activity.

Senba, E., & Kami, K. (2017). A new aspect of chronic pain as a lifestyle-related disease. In Neurobiology of Pain (Vol. 1, pp. 6–15). Elsevier B.V. doi: 10.1016/j.ynpai.2017.04.003

Singh, A., & Kar, S. K. (2017). How electroconvulsive therapy works?: Understanding the neurobiological mechanisms. In Clinical Psychopharmacology and Neuroscience (Vol. 15, Issue 3, pp. 210–221). Korean College of Neuropsychopharmacology. doi: 10.9758/cpn.2017.15.3.210

Stevens, F. L., Hurley, R. A., Taber, K. H., & Hayman, L. A. (2011). Anterior Cingulate Cortex: Unique Role in Cognition and Emotion WINDOWS TO THE BRAIN. In J Neuropsychiatry Clin Neurosci (Vol. 23, Issue 2). https://neuro.psychiatryonline.org

Suzuki, K., Ebina, Y., Shindo, T., Takano, T., Awata, S., & Matsuoka, H. (2009). Repeated electroconvulsive therapy courses improved chronic regional pain with depression caused by failed back syndrome. https://www.medscimonit.com/abstract/index/idArt/869604

?wieboda, P., Filip, R., Prystupa, A., & Drozd, M. (2013). Assessment of pain: types, mechanism and treatment. In Ann Agric Environ Med (Vol. 1). www.aaem.pl

Tjølsen, A., Berge, O. G., Hunskaar, S., Rosland, J. H., & Hole, K. (1992). The formalin test: an evaluation of the method. Pain, 51(1), 5–17. doi: 10.1016/0304-3959(92)90003-T

Usui, C., Doi, N., Nishioka, M., Komatsu, H., Yamamoto, R., Ohkubo, T., Ishizuka, T., Shibata, N., Hatta, K., Miyazaki, H., Nishioka, K., & Arai, H. (2006). Electroconvulsive therapy improves severe pain associated with fibromyalgia. Pain, 121(3), 276–280. doi: 10.1016/j.pain.2005.12.025

Wang, Z., & Peng, Y. B. (2022). Multi-region local field potential signatures in response to the formalin-induced inflammatory stimulus in male rats. Brain Research, 1778. doi: 10.1016/j.brainres.2022.147779

Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., Cohen, L. G., Fregni, F., Herrmann, C. S., Kappenman, E. S., Knotkova, H., Liebetanz, D., Miniussi, C., Miranda, P. C., Paulus, W., Priori, A., Reato, D., Stagg, C., Wenderoth, N., & Nitsche, M. A. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. In Clinical Neurophysiology (Vol. 127, Issue 2, pp. 1031–1048). Elsevier Ireland Ltd. doi: 10.1016/j.clinph.2015.11.012

Yu, K., Liu, C., Niu, X., & He, B. (2021). Transcranial Focused Ultrasound Neuromodulation of Voluntary Movement-Related Cortical Activity in Humans. IEEE Transactions on Biomedical Engineering, 68(6), 1923–1931. doi: 10.1109/TBME.2020.3030892

Zhang, T., Liang, H., Wang, Z., Qiu, C., Bo Peng, Y., Zhu, X., Li, J., Ge, X., Xu, J., Huang, X., Tong, J., Ou-Yang, J., Yang, X., Li, F., & Zhu, B. (2022). A P P L I E D S C I E N C E S A N D E N G I N E E R I N G Piezoelectric ultrasound energy-harvesting device for deep brain stimulation and analgesia applications. In Sci. Adv (Vol. 8). https://www.science.org

Zhang, T., Wang, Z., Liang, H., Wu, Z., Li, J., Ou-Yang, J., Yang, X., Peng, Y. B., & Zhu, B. (2022). Transcranial Focused Ultrasound Stimulation of Periaqueductal Gray for Analgesia. IEEE Transactions on Biomedical Engineering, 1–1. doi: 10.1109/tbme.2022.3162073

Presenting Author

Julieta Trejo

Poster Authors

Julieta Trejo

BSc

The University of Texas at Arlington

Lead Author

Zhen Wang

PhD

Lead Author

Perry N. Fuchs

PhD

Lead Author

Yuan Peng

Univ of Texas at Arlington

Lead Author

Topics

  • Mechanisms: Biological-Systems (Physiology/Anatomy)